This course introduces the fundamentals of organismal biology: the scientific method, principles of evolution including Darwins theory of natural selection, adaptations in organismal form and function, biodiversity, the interactions of organisms with their environment, and the practices of scientific communication. [Note 1: This course is designed for science majors. Students who intend to continue to study in Biology should note the need to complete BIOC 1001 as a prerequisite for BIOL 1501.] (Format: Lecture 3 Hours, Laboratory 3 Hours) (Exclusion: Any version of BIOL 1001 previously offered with a different title) Monday Wednesday and Friday 10:30 to 11:20AM Crabtree M14.
This course applies biological principles to practical human concerns. It introduces the development, structure and function of the human body, and mechanisms involved in degenerative infectious diseases, discusses human reproduction and genetics, examines the impact of evolutionary theory on our understanding of the human species, considers the interdependence between natural ecosystems and human activities, and looks at threats to the environment through pollution and overpopulation. [Note 1: This course is restricted to non-science majors. Science majors require the instructors permission to enrol.] (Format: Lecture 3 Hours)(Distribution: Natural Science-b) Monday Wednesday and Friday 1:30 to 2:20PM Flemington 116.
This course introduces current concepts of population and community ecology using local ecosystems and organisms, principally aquatic insects, whenever possible. (Format: Lecture 3 Hours, Laboratory 3 Hours) (Exclusion: Any version of BIOL 2101 previously offered with a different title) Monday Wednesday and Friday 8:30 to 9:20AM Flemington 116.
This course will survey the functional and evolutionary diversity of organisms that are too small to be seen with the naked eye. This includes: Archaea, Bacteria, prions, viruses and selected eukaryotic microbes such as fungi, protozoa and algae. We will examine the cellular structures, evolutionary history and metabolic processes characteristic of each group, with an important emphasis on similarities and differences between microorganisms. The course will also examine how genomic sequencing is altering our views of microbial evolution and ecology.
This course introduces the structure and function of plants with an emphasis on vascular plants. Topics include comparative anatomy, development and functional adaptations to the environment, and how genomic sequencing is altering our views of plant evolution and ecology. (Format: Lecture 3 Hours, Laboratory 3 Hours) (Exclusion: Any version of BIOL 2301 previously offered with a different title) Monday Wednesday and Friday 9:30 to 10:20AM Flemington 116.
This course introduces data analysis, the principles of experimental design and the formulating and testing of hypotheses. It describes graphical and statistical (t-test, chi-square test, ANOVA) analyses of laboratory and field collected data, and discusses their appropriate use in Biology. [Note 1: Data management and statistical analyses uses Excel and R.](Format: Lecture 3 Hours and Tutorial 1.5 Hours) (Exclusion: BIOL 3701; any version of BIOL 2701 previously offered with a different title) Tuesday and Thursday 8:30 to 9:50AM Flemington 116.
This course explains the core molecular structures of the immune system: antibodies and their interactions with antigens. It places these molecular interactions in the context of the cells and tissues of the immune system and the signaling cascades that regulate immune responses. The course concludes with topics in immunology and applications of immunochemistry. [Note 1: This course is cross-listed with BIOC 3051 and may therefore count as three credits in either discipline.] (Format: Lecture 3 Hours)(Exclusion: BIOC 4011) Tuesday and Thursday 8:30 to 9:50AM Barclay 021.
This course provides a comprehensive study of the physiology of the human body. It examines the function of the nervous, muscular, sensory, endocrine, respiratory, cardiovascular, and renal systems. [Note: Laboratory exercises with students as participants in experiments complement the course material and advance students knowledge of important physiological processes.] (Format: Lecture 3 Hours, Laboratory 3 Hours) (Exclusions: Any version of BIOL 3201 offered prior to 2015-2016; Any version of BIOL 3211 previously offered with a different title) Monday Wednesday and Friday 10:30 to 11:20AM Sir James Dunn Building 106.
A lecture, laboratory, and field course summarizing recent advances in our understanding of macroscopic plant growth in the sea. This progress has been based upon studies involving morphology, development, physiology, and ecology. The following topics will be emphasized: the sea as an environment for plants to grow, production of marine plants, morphogenesis and geographic distribution of marine plants, and use of marine plants. (Format: Lecture 3 Hours, Laboratory 3 Hours) Monday Wednesday and Friday 12:30 to 1:20PM Sir James Dunn Building 106.
This course investigates the ecology of estuarine, intertidal, and subtidal ecosystems at the individual, population and community level. Topics include community structure, food webs, reproductive biology of benthic organisms, and effects of physical and anthropogenic factors. [Note: The course includes a field trip to the Huntsman Marine Sciences Centre in St. Andrews, N.B. Students are expected to contribute to their accommodation costs.] (Format: Lecture 3 Hours, Field Trip) Monday Wednesday and Friday 10:30 to 11:20AM Flemington 103.
This course introduces the history, practice, and future of aquaculture with particular emphasis on development of finfish aquaculture in Atlantic Canada. Topics include biology of growth, culture of live feed, hatchery techniques, health, nutrition, engineering, economics, and public policy.(Format: Lecture 3 Hours, Laboratory 3 Hours) (Exclusion: BIOL 3991 Principles of Aquaculture) Tuesday and Thursday 11:30 to 12:50PM Flemington 103.
A course which will present the development, physiology, ecology and evolution of animal behaviour. Topics to be discussed will include basic concepts of behavioural organization; physiology of behaviour, learning and memory phenomena; behaviour of communication; reproductive behaviour and mating systems; spatial distribution patterns and social systems; migrations and orientation mechanisms; feeding and anti-predator behaviours. Field excursions and laboratory exercises will permit students to observe and to quantify different behaviours in a variety of animal species. (Format: Lecture 3 Hours, Laboratory 3 Hours) Tuesday and Thursday 10:00 to 11:20AM Flemington 103.
Insects surpass all other organisms in their diversity and numbers, comprising over two thirds of the earths known animals. This course will introduce students to this class of organisms by covering the following six areas: structure, function classification and phylogeny, behaviour and ecology. Throughout the course, evolutionary forces influencing the animals and systems involved will be stressed. Discussions will emphasize the use of the comparative methods to determine what these forces might be. (Format: Lecture 3 Hours, Laboratory/Field Trip 3 Hours) Monday Wednesday and Friday 8:30 to 9:20AM Flemington 103.
This course investigates theoretical and observed changes in ecologically significant traits. It explores the connections between ecological properties of populations and evolutionary forces at work through the study of population structure, mathematical treatment of models, quantitative traits, and natural selection on phenotypic traits. (Format: Lecture 3 Hours) Monday Wednesday and Friday 9:30 to 10:20AM Flemington 103.
An introduction to the study of birds through lectures, laboratories and field trips. All of the bird families represented in the Maritime region will be discussed, with special emphasis on anatomy, structural adaptations, behaviour and physiology. The species composing the bird communities of the Sackville area will be examined during field trips. (Format: Lecture 3 Hours, Laboratory/Field Trip 3 Hours) Monday Wednesday and Friday 12:30 to 1:20PM Flemington 103.

This course explores the metabolic and systemic basis of exercise, the physiology of training and performance and exercise under special conditions such as environment and disease. In addition to studying these fundamentals of exercise physiology, this course delves into recent research and advancements in the field. (Format: Seminar 3 Hours) Wednesday 1:30 to 4:20PM Flemington 103.

This course investigates advanced topics in neurophysiology including neuro- and glio-transmission, the physiology and plasticity of synapses, and neuronal circuits that underlie behaviour. It also discusses the development and pathophysiology of the nervous system. (Format: Lecture/Seminar 3 Hours) (Exclusion: BIOL 4991 Special Topics in Neurophysiology) Tuesday and Thursday 10:00 to 11:20AM Avard Dixon 116.
A seminar course for Honours students in Biology which will critically evaluate a wide range of topics from the current literature in all branches of biological science. Students will be expected to deliver seminars on topics outside their thesis area and present preliminary thesis results. (Format: Lecture/Seminar 3 Hours) Monday Wednesday and Friday 11:30 to 12:20PM Flemington 103.
This course permits senior students, under the direction of faculty members, to pursue their interest in areas not covered, or not covered in depth, by other courses through a program of independent study. (Format: Independent Study) [Note 1: Permission of the Department/Program Advisor. Students must obtain consent of an instructor who is willing to be a supervisor and must register for the course prior to the last day for change of registration in the term during which the course is being taken. Note 2: A program on Independent Study cannot duplicate subject matter covered through regular course offerings. Note 3: Students may register for BIOL 4950/51 more than once, provided the subject matter differs.]
This course permits senior students, under the direction of faculty members, to pursue their interest in areas not covered, or not covered in depth, by other courses through a program of independent study. (Format: Independent Study) [Note 1: Permission of the Department/Program Advisor. Students must obtain consent of an instructor who is willing to be a supervisor and must register for the course prior to the last day for change of registration in the term during which the course is being taken. Note 2: A program on Independent Study cannot duplicate subject matter covered through regular course offerings. Note 3: Students may register for BIOL 4950/51 more than once, provided the subject matter differs.]