This course introduces current topics and advances in Biochemistry and engages students in the scope and activities of the discipline. It examines the central role of water in biological systems, leading to an introduction of acid-base equilibria, the properties of biological membranes, and the bioenergetics of solutes moving across membranes. It introduces the principles of carbon bonding and electronegativity, leading to coverage of the bioorganic functional groups, whose characteristic properties and reactions combine to create the highly complex biological macromolecule classes of carbohydrates, proteins,nucleic acids, and lipids. (Format: Lecture 3 Hours, Tutorial 1.5 Hours) (Distribution: Natural Science-b) Tuesday and Thursday 8:30 to 9:50AM Crabtree M14.
This course examines the properties of enzymes including kinetics and regulation. It introduces carbohydrate and fat metabolism, respiratory and photosynthetic electron transport, and nitrogen assimilation and dissimilation, concentrating on key stoichiometries, structures, redox biochemistry, and bioenergetics. (Format: Lecture 3 Hours, Laboratory 3 Hours) (Exclusion: Any version of BIOC 2001 previously offered with a different title) Tuesday and Thursday 8:30 to 9:50AM Flemington 116.
This course teaches students to plan and conduct a range of current biochemical analyses including spectroscopy, gas analyses, and chromatographic separations and imaging, with particular emphasis on the new opportunities opened through high-throughput computerized data capture applied to both established and new instrumental analyses. In parallel it guides students through the processes of plotting, interpreting, and presenting the meaning of their results. (Format: Integrated Lecture and Laboratory, 6 Hours) Monday 12:30 to 5:20PM Barclay 201.
This course examines the coordinated biochemical transformations of matter, energy, and information through metabolic pathways, emphasizing nitrogen, lipid, and secondary metabolism, metabolic compartmentalization and integration, and bioenergetics. (Format: Lecture 3 Hours) (Exclusion: BIOC 3501 Metabolism) Monday Wednesday and Friday 9:30 to 10:20AM Hart Hall 218.
This course examines the processes by which cells receive external signals and convert this information into cellular events through ordered sequences of biochemical reactions that may result in changes to cellular metabolism, behaviour, or gene expression.(Format: Lecture 3 Hours) Tuesday and Thursday 10:00 to 11:20AM Sir James Dunn Building 406.
This is a seminar course for Honours students in Biochemistry, which critically evaluates a wide range of topics from the current literature. Students are expected to deliver seminars on topics outside their thesis areas and to present preliminary thesis results. (Format: Seminar 3 Hours) Monday Wednesday and Friday 11:30 to 12:20PM Ralph Pickard Bell Library 316.