This algebra-based course introduces and describes from a Physics perspective the many physical processes involving living organisms. Topics include biomechanics, kinesiology, energy and the body, fluid flow, electrical signaling, electrocardiography and electroencephalography, sound and hearing, light and vision, microscopy, and imaging of brain function. [Note 1: This course is designed for students planning to major in a life science.] (Format: Integrated Lecture/Collaborative Learning/Laboratory 6 Hours) (Distribution: Natural Science a/c) (Exclusion: PHYS 1051; PHYS 3521) Monday Wednesday and Friday 11:30 to 1:20PM Sir James Dunn Building 308.

- Teacher: David Fleming

This calculus-based course introduces further issues in classical and modern physics. Topics include time-dependent acceleration, gravitation, rotational motion, angular momentum, simple harmonic motion, electric forces, fields and potentials, magnetism, and electromagnetic induction. The course also introduces special relativity, nuclear reactions, particle physics, and cosmology. (Format: Integrated Lecture and Laboratory, 6 Hours) Tuesday and Thursday 8:30 to 9:50AM Sir James Dunn Building 308.

- Teacher: Ralf Bruening

This calculus-based course introduces further issues in classical and modern physics. Topics include time-dependent acceleration, gravitation, rotational motion, angular momentum, simple harmonic motion, electric forces, fields and potentials, magnetism, and electromagnetic induction. The course also introduces special relativity, nuclear reactions, particle physics, and cosmology. (Format: Integrated Lecture and Laboratory, 6 Hours) Tuesday and Thursday 11:30 to 12:50PM Sir James Dunn Building 308.

- Teacher: Ralf Bruening

This course will examine issues concerning the origin, evolution and survival of life in the universe from an astrophysical perspective. Topics covered include cosmology and the origin and evolution of the universe, solar system origin, detection of extrasolar planets, what is life and what conditions are necessary to sustain it, searches for life in the solar system, habitable zones, complex organics in extraterrestrial materials, delivery of organics to the primordial and current Earth and other planets, astrophysical threats to life on Earth, life in space, and searches for extraterrestrial intelligence. (Format: Lecture 3 Hours, Laboratory 3 Hours) Monday Wednesday and Friday 11:30 to 12:20PM Sir James Dunn Building 108.

- Teacher: Catherine Lovekin

This course provides students with a selection of mathematical skills needed in more advanced physics courses. It introduces frequently utilized mathematical methods in theoretical physics in close connection with physics applications. Topics include vector and tensor analysis, use of special functions, operators and eigenvalue problems. Fourier analysis, and complex variable techniques. [Note 1: This course is cross-listed with MATH 3451 and may therefore count as three credits in either discipline.] (Format: Lecture 3 Hours, Laboratory 3 Hours) Tuesday and Thursday 8:30 to 9:50AM Sir James Dunn Building 104.

- Teacher: Mohammad Ahmady

This course considers the two major revolutionary ideas of modern physics, quantum mechanics and special relativity. It considers Lorentz transformations, length contraction and time dilation, relativistic mass and momentum, including the fourvector relativistic notation. It also examines evidence for quantization along with early models for atoms and discusses De Broglies hypothesis for the matter wave. Other topics include the Schrodinger equation and its solutions for some usual systems. The course ends with a look at the three dimensional systems and a discussion of angular momentum in quantum mechanics. (Format: Lecture 3 Hours, Laboratory 3 Hours) (Exclusion: Any version of PHYS 3811 previously offered with a different title) Monday Wednesday and Friday 9:30 to 10:20AM Sir James Dunn Building 406.

- Teacher: David Fleming

This course provides an advanced treatment of a number of topics in modern optics with particular emphasis on topics of industrial and research importance. A brief treatment of geometric optics will concentrate on the design of optical systems. Topics in physical optics may include dispersion in materials, production and properties of polarized light, interference, diffraction in the Fresnel and Fraunhofer limits, Fourier optics, holography and an introduction to quantum optics. Applications of this theoretical background will be made in such areas as fibre-optic transmission, photonic devices, thin film coatings, and electrochromic devices. There will also be some considerations of electro-optical devices such as lasers, charge coupled device detectors, image intensifiers and photodiodes. (Format: Lecture 3 Hours, Laboratory 3 Hours) (Exclusion: PHYS 4401) Monday Wednesday and Friday 8:30 to 9:20AM Sir James Dunn Building 406.

- Teacher: David Hornidge

This course covers three-dimensional dynamics of both particles and rigid bodies using various coordinate systems. The course focuses on an introduction to Lagrangian and Hamiltonian formalisms, followed by application of these approaches to problems in constrained motion. Other topics covered include motion in resistive fluids, planetary orbits, motion in accelerated reference frames and the inertia tensor. The latter part of the course provides an introduction to general relativity including spacetime invariants, metric and metric tensor, the field equations and tests of general relativity. (Format: Integrated Lecture/Laboratory, 6 Hours) (Exclusion: Any version of PHYS 4411 previously offered with a different title) Monday Wednesday and Friday 1:30 to 2:20PM Sir James Dunn Building 104.

- Teacher: Catherine Lovekin

This course extends the study of principles of quantum mechanics, comparing properties of continuous and discrete representations. It also develops time-independent perturbation theory for first order, second order, and degenerate cases and treats small perturbations through direct diagonalization of large matrices. This course examines variational principle, central force problems, elements of scattering theory, and the addition of quantized angular momenta. The course concludes with applications of quantum mechanics in molecules, aspects of relativistic quantum mechanics, time dependence in quantum and quantum statistics. [Note 1: This course is cross-listed with CHEM 4831 and may therefore count as 3 credits in either discipline.] (Format: Lecture 3 Hours) (Exclusion: Any version of PHYS 4831 previously offered with a different title) Tuesday and Thursday 10:00 to 11:20AM Sir James Dunn Building 101.

- Teacher: David Hornidge